310+ Functions
47 Constants
80+ Units
437+ Total Items
🔍

Complete Syntax Guide

Operator Precedence (Highest to Lowest)

Precedence Operator Description Associativity Example
1( )Parentheses (grouping)N/A(2 + 3) * 4
2^, **ExponentiationRight2^3^2 = 2^(3^2) = 512
3+x, -x, !, notUnary operatorsRight-5, !true
4*, /, %Multiplication, Division, ModuloLeft6 * 4 / 2
5+, -Addition, SubtractionLeft5 + 3 - 2
6<, >, <=, >=ComparisonLeft5 > 3
7==, !=, <>EqualityLeftx == 5
8&&, andLogical ANDLefta && b
9||, orLogical ORLefta || b

Function Call Syntax

// Basic function calls function_name(argument1, argument2, ...) // Examples sin(pi/4) // Single argument pow(2, 8) // Two arguments mean(1, 2, 3, 4, 5) // Multiple arguments kinetic_energy(mass, vel) // Variables as arguments if(x > 0, x, -x) // Conditional function

Variable Assignment and Usage

// Set variables in C# evaluator.SetVariable("mass", 1000); evaluator.SetVariable("velocity", 30); evaluator.SetVariable("pi_over_4", Math.PI / 4); // Use variables in expressions evaluator.Evaluate("kinetic_energy(mass, velocity)"); evaluator.Evaluate("sin(pi_over_4)"); evaluator.Evaluate("mass * velocity^2 / 2");

Numeric Formats

Supported Number Formats
  • Integers: 42, -17, 0
  • Decimals: 3.14159, -2.5, 0.001
  • Scientific: 1.23e-4, 6.022E23, -9.81e0
  • Leading decimal: .5 (equals 0.5)

Special Operators and Keywords

Operator/Keyword Description Example Result
andLogical AND (alternative to &&)true and false0 (false)
orLogical OR (alternative to ||)true or false1 (true)
notLogical NOT (alternative to !)not true0 (false)
**Exponentiation (alternative to ^)2**8256
<>Not equal (alternative to !=)5 <> 31 (true)
⚠️ Important Syntax Rules
  • Case Sensitivity: Variable names and function names are case-sensitive
  • Whitespace: Spaces are ignored in expressions
  • Parentheses: Always match opening and closing parentheses
  • Decimal Separator: Use period (.) for decimal point, not comma
  • Function Arguments: Separate with commas, not semicolons
📊 Mathematical Functions 120+ Functions
Basic Operations (15)
Function Description Formula Example Result
abs(x)Absolute value|x|abs(-5.7)5.7
sqrt(x)Square root√xsqrt(25)5
cbrt(x)Cube root∛xcbrt(27)3
pow(x, y)x raised to power yx^ypow(2, 10)1024
root(n, x)nth root of xx^(1/n)root(4, 16)2
square(x)x squaredsquare(7)49
cube(x)x cubedcube(4)64
reciprocal(x)Reciprocal of x1/xreciprocal(8)0.125
sign(x)Sign of xsgn(x)sign(-3.5)-1
min(...)Minimum of argumentsmin(a,b,c,...)min(3,1,4,2)1
max(...)Maximum of argumentsmax(a,b,c,...)max(3,1,4,2)4
clamp(x,min,max)Clamp x between min and maxmax(min, min(x, max))clamp(15,0,10)10
Exponential and Logarithmic Functions (12)
Function Description Formula Example Result
exp(x)Exponential functione^xexp(1)2.718
exp2(x)Base-2 exponential2^xexp2(10)1024
exp10(x)Base-10 exponential10^xexp10(3)1000
expm1(x)e^x - 1 (accurate for small x)e^x - 1expm1(0.001)0.001001
ln(x)Natural logarithmln(x)ln(e)1
log(x)Base-10 logarithmlog₁₀(x)log(100)2
log(base,x)Logarithm base blog_b(x)log(2,8)3
log2(x)Base-2 logarithmlog₂(x)log2(1024)10
log10(x)Base-10 logarithmlog₁₀(x)log10(1000)3
log1p(x)ln(1 + x) (accurate for small x)ln(1 + x)log1p(0.001)0.0009995
Trigonometric Functions (18)
Function Description Formula Example Result
sin(x)Sine (radians)sin(x)sin(pi/2)1
cos(x)Cosine (radians)cos(x)cos(0)1
tan(x)Tangent (radians)tan(x)tan(pi/4)1
csc(x)Cosecant1/sin(x)csc(pi/2)1
sec(x)Secant1/cos(x)sec(0)1
cot(x)Cotangent1/tan(x)cot(pi/4)1
asin(x)Arcsinesin⁻¹(x)asin(1)π/2
acos(x)Arccosinecos⁻¹(x)acos(0)π/2
atan(x)Arctangenttan⁻¹(x)atan(1)π/4
atan2(y,x)Two-argument arctangentatan2(y,x)atan2(1,1)π/4
acsc(x)Arccosecantcsc⁻¹(x)acsc(1)π/2
asec(x)Arcsecantsec⁻¹(x)asec(1)0
acot(x)Arccotangentcot⁻¹(x)acot(1)π/4
deg(x)Radians to degreesx × 180/πdeg(pi)180
rad(x)Degrees to radiansx × π/180rad(180)π
Hyperbolic Functions (12)
Function Description Formula Example Result
sinh(x)Hyperbolic sine(e^x - e^(-x))/2sinh(1)1.175
cosh(x)Hyperbolic cosine(e^x + e^(-x))/2cosh(0)1
tanh(x)Hyperbolic tangentsinh(x)/cosh(x)tanh(1)0.762
csch(x)Hyperbolic cosecant1/sinh(x)csch(1)0.851
sech(x)Hyperbolic secant1/cosh(x)sech(0)1
coth(x)Hyperbolic cotangentcosh(x)/sinh(x)coth(1)1.313
asinh(x)Inverse hyperbolic sineln(x + √(x² + 1))asinh(1)0.881
acosh(x)Inverse hyperbolic cosineln(x + √(x² - 1))acosh(2)1.317
atanh(x)Inverse hyperbolic tangent½ln((1+x)/(1-x))atanh(0.5)0.549
acsch(x)Inverse hyperbolic cosecantasinh(1/x)acsch(1)0.881
asech(x)Inverse hyperbolic secantacosh(1/x)asech(0.5)1.317
acoth(x)Inverse hyperbolic cotangentatanh(1/x)acoth(2)0.549
Statistical Functions (15)
Function Description Formula Example Result
sum(...)Sum of all argumentsΣxᵢsum(1,2,3,4,5)15
mean(...)Arithmetic meanΣxᵢ/nmean(1,2,3,4,5)3
median(...)Middle valuex₍ₙ₊₁₎/₂median(1,2,3,4,5)3
mode(...)Most frequent valueargmax(frequency)mode(1,2,2,3)2
range(...)Maximum minus minimummax - minrange(1,2,3,4,5)4
variance(...)Population varianceΣ(xᵢ-μ)²/nvariance(1,2,3,4,5)2
stdev(...)Standard deviation√(variance)stdev(1,2,3,4,5)1.581
skewness(...)Distribution skewnessE[(X-μ)³]/σ³skewness(1,2,3,4,5)0
kurtosis(...)Distribution kurtosisE[(X-μ)⁴]/σ⁴ - 3kurtosis(1,2,3,4,5)-1.2
Number Theory Functions (15)
Function Description Formula Example Result
factorial(n)Factorialn!factorial(5)120
double_factorial(n)Double factorialn!!double_factorial(5)15
fibonacci(n)Fibonacci numberF(n)fibonacci(10)55
lucas(n)Lucas numberL(n)lucas(5)11
gcd(a,b)Greatest common divisorgcd(a,b)gcd(48,18)6
lcm(a,b)Least common multipleab/gcd(a,b)lcm(12,8)24
isprime(n)Check if primeprime testisprime(17)1
nextprime(n)Next prime after nmin{p > n : prime(p)}nextprime(10)11
totient(n)Euler's totient functionφ(n)totient(12)4
mobius(n)Möbius functionμ(n)mobius(6)1
divisor_sigma(n,k)Sum of k-th powers of divisorsσₖ(n)divisor_sigma(6,1)12
Combinatorial Functions (8)
Function Description Formula Example Result
permutation(n,r)Permutationsn!/(n-r)!permutation(5,3)60
combination(n,r)Combinationsn!/(r!(n-r)!)combination(5,3)10
binomial(n,k)Binomial coefficientC(n,k)binomial(5,2)10
stirling1(n,k)Stirling numbers 1st kinds(n,k)stirling1(4,2)11
stirling2(n,k)Stirling numbers 2nd kindS(n,k)stirling2(4,2)7
bell(n)Bell numbersB(n)bell(4)15
catalan(n)Catalan numbersC(n)catalan(4)14
Special Functions (20)
Function Description Formula Example Result
gamma(x)Gamma functionΓ(x)gamma(5)24
loggamma(x)Log of gamma functionln(Γ(x))loggamma(5)3.178
digamma(x)Digamma functionψ(x)digamma(2)0.423
polygamma(n,x)Polygamma functionψ⁽ⁿ⁾(x)polygamma(1,2)0.645
beta(a,b)Beta functionB(a,b)beta(2,3)0.083
erf(x)Error functionerf(x)erf(1)0.843
erfc(x)Complementary error function1 - erf(x)erfc(1)0.157
erfinv(x)Inverse error functionerf⁻¹(x)erfinv(0.5)0.477
besselj0(x)Bessel function J₀J₀(x)besselj0(0)1
besselj1(x)Bessel function J₁J₁(x)besselj1(1)0.440
bessely0(x)Bessel function Y₀Y₀(x)bessely0(1)0.088
bessely1(x)Bessel function Y₁Y₁(x)bessely1(1)-0.781
riemann_zeta(s)Riemann zeta functionζ(s)riemann_zeta(2)1.645
elliptic_k(k)Complete elliptic integral KK(k)elliptic_k(0.5)1.854
elliptic_e(k)Complete elliptic integral EE(k)elliptic_e(0.5)1.351
Rounding Functions (5)
Function Description Formula Example Result
floor(x)Largest integer ≤ x⌊x⌋floor(3.7)3
ceil(x)Smallest integer ≥ x⌈x⌉ceil(3.2)4
round(x)Round to nearest integerround(x)round(3.6)4
round(x,n)Round to n decimal placesround(x,n)round(3.14159,2)3.14
trunc(x)Truncate to integertrunc(x)trunc(3.9)3
frac(x)Fractional partx - trunc(x)frac(3.7)0.7
🔬 Physics Functions 50+ Functions
Classical Mechanics (15)
Function Description Formula Example Result
velocity(d,t)Velocity from distance and timev = d/tvelocity(100,5)20 m/s
acceleration(v,t)Acceleration from velocity and timea = v/tacceleration(20,4)5 m/s²
force(m,a)Force from mass and accelerationF = maforce(10,9.8)98 N
momentum(m,v)Linear momentump = mvmomentum(5,20)100 kg⋅m/s
kinetic_energy(m,v)Kinetic energyKE = ½mv²kinetic_energy(10,20)2000 J
potential_energy(m,g,h)Gravitational potential energyPE = mghpotential_energy(10,9.8,5)490 J
work(F,d,θ)Work doneW = Fd cos θwork(100,5,0)500 J
power_mech(W,t)Mechanical powerP = W/tpower_mech(1000,10)100 W
impulse(F,t)ImpulseJ = Ftimpulse(100,2)200 N⋅s
angular_velocity(θ,t)Angular velocityω = θ/tangular_velocity(pi,2)π/2 rad/s
angular_acceleration(ω,t)Angular accelerationα = ω/tangular_acceleration(10,2)5 rad/s²
centripetal_force(m,v,r)Centripetal forceFc = mv²/rcentripetal_force(5,10,2)250 N
moment_of_inertia(m,r)Moment of inertia (point mass)I = mr²moment_of_inertia(2,3)18 kg⋅m²
torque(F,r)Torqueτ = Frtorque(50,0.5)25 N⋅m
angular_momentum(I,ω)Angular momentumL = Iωangular_momentum(10,5)50 kg⋅m²/s
Oscillations and Waves (8)
Function Description Formula Example Result
period(f)Period from frequencyT = 1/fperiod(50)0.02 s
frequency(T)Frequency from periodf = 1/Tfrequency(0.01)100 Hz
wave_speed(f,λ)Wave speedv = fλwave_speed(440,0.77)339 m/s
wavelength(v,f)Wavelengthλ = v/fwavelength(340,440)0.77 m
simple_harmonic_motion(A,ω,t,φ)Simple harmonic motionx = A cos(ωt + φ)simple_harmonic_motion(5,2,1,0)-2.08
pendulum_period(L,g)Simple pendulum periodT = 2π√(L/g)pendulum_period(1,9.8)2.01 s
spring_period(m,k)Mass-spring system periodT = 2π√(m/k)spring_period(1,100)0.628 s
resonant_frequency(L,C)LC circuit resonant frequencyf = 1/(2π√(LC))resonant_frequency(1e-3,1e-6)159 Hz
Thermodynamics (7)
Function Description Formula Example Result
ideal_gas_pressure(n,R,T,V)Ideal gas pressureP = nRT/Videal_gas_pressure(1,8.314,300,0.024)103,925 Pa
ideal_gas_volume(n,R,T,P)Ideal gas volumeV = nRT/Pideal_gas_volume(1,8.314,300,101325)0.0246 m³
ideal_gas_temperature(P,V,n,R)Ideal gas temperatureT = PV/(nR)ideal_gas_temperature(101325,0.024,1,8.314)293 K
heat_capacity(Q,ΔT)Heat capacityC = Q/ΔTheat_capacity(1000,20)50 J/K
thermal_expansion(L₀,α,ΔT)Linear thermal expansionΔL = L₀αΔTthermal_expansion(10,1.2e-5,50)0.006 m
stefan_boltzmann(σ,A,T)Stefan-Boltzmann lawP = σAT⁴stefan_boltzmann(5.67e-8,1,300)459 W
carnot_efficiency(T_hot,T_cold)Carnot efficiencyη = 1 - T_c/T_hcarnot_efficiency(500,300)0.4
Electromagnetism (8)
Function Description Formula Example Result
coulomb_force(q1,q2,r)Coulomb forceF = kq₁q₂/r²coulomb_force(1e-6,1e-6,0.1)0.899 N
electric_field(F,q)Electric fieldE = F/qelectric_field(100,1e-6)1e8 N/C
electric_potential(E,d)Electric potentialV = Edelectric_potential(1000,0.01)10 V
capacitance(Q,V)CapacitanceC = Q/Vcapacitance(1e-6,12)8.33e-8 F
magnetic_force(q,v,B,θ)Magnetic forceF = qvB sin θmagnetic_force(1e-6,1e5,0.1,pi/2)1e-2 N
lorentz_force(q,E,v,B)Lorentz forceF = q(E + v×B)lorentz_force(1e-6,1000,1e5,0.1)0.011 N
magnetic_flux(B,A,θ)Magnetic fluxΦ = BA cos θmagnetic_flux(0.1,0.01,0)0.001 Wb
faraday_law(dΦ_dt)Faraday's lawε = -dΦ/dtfaraday_law(-0.1)0.1 V
Quantum Mechanics (6)
Function Description Formula Example Result
planck_energy(f)Photon energyE = hfplanck_energy(1e15)6.63e-19 J
de_broglie_wavelength(m,v)Matter wave wavelengthλ = h/(mv)de_broglie_wavelength(9.1e-31,1e6)7.28e-10 m
photon_energy(λ)Photon energy from wavelengthE = hc/λphoton_energy(500e-9)3.97e-19 J
photon_momentum(λ)Photon momentump = h/λphoton_momentum(500e-9)1.33e-27 kg⋅m/s
bohr_radius(Z)Bohr radius for Z protonsa₀/Z²bohr_radius(1)5.29e-11 m
rydberg_energy(Z)Rydberg energyRy × Z²rydberg_energy(1)13.6 eV
Special Relativity (5)
Function Description Formula Example Result
lorentz_factor(v)Lorentz factorγ = 1/√(1-v²/c²)lorentz_factor(0.9*c)2.29
time_dilation(t₀,v)Time dilationt = γt₀time_dilation(10,0.9*c)22.9 s
length_contraction(L₀,v)Length contractionL = L₀/γlength_contraction(10,0.9*c)4.36 m
relativistic_energy(m,v)Relativistic energyE = γmc²relativistic_energy(1,0.9*c)2.06e17 J
relativistic_momentum(m,v)Relativistic momentump = γmvrelativistic_momentum(1,0.9*c)6.18e8 kg⋅m/s
Optics (6)
Function Description Formula Example Result
snell_law(n1,θ1,n2)Snell's law refractionsin θ₂ = n₁sin θ₁/n₂snell_law(1,pi/4,1.5)0.471
lens_equation(f,d)Thin lens equation1/f = 1/d₀ + 1/dᵢlens_equation(0.1,0.15)0.3 m
magnification(dᵢ,d₀)Linear magnificationm = dᵢ/d₀magnification(0.3,0.15)2
brewster_angle(n1,n2)Brewster angleθB = arctan(n₂/n₁)brewster_angle(1,1.5)0.983 rad
critical_angle(n1,n2)Critical angle for total internal reflectionθc = arcsin(n₂/n₁)critical_angle(1.5,1)0.7297 rad
rayleigh_scattering(λ)Rayleigh scattering intensityI ∝ 1/λ⁴rayleigh_scattering(500e-9)1.6e31
⚡ Electronics Functions 35+ Functions
Basic Circuit Laws (5)
Function Description Formula Example Result
ohms_law_voltage(I,R)Voltage from current and resistanceV = IRohms_law_voltage(2,100)200 V
ohms_law_current(V,R)Current from voltage and resistanceI = V/Rohms_law_current(12,1000)0.012 A
ohms_law_resistance(V,I)Resistance from voltage and currentR = V/Iohms_law_resistance(12,0.1)120 Ω
power_electrical(V,I)Electrical powerP = VIpower_electrical(12,2)24 W
energy_electrical(P,t)Electrical energyE = Ptenergy_electrical(100,3600)360000 J
Resistor Networks (4)
Function Description Formula Example Result
resistors_series(...)Series resistanceR = R₁ + R₂ + R₃ + ...resistors_series(100,200,300)600 Ω
resistors_parallel(...)Parallel resistance1/R = 1/R₁ + 1/R₂ + ...resistors_parallel(100,100)50 Ω
voltage_divider(Vin,R1,R2)Voltage divider outputVout = Vin × R₂/(R₁+R₂)voltage_divider(12,1000,2000)8 V
current_divider(Iin,R1,R2)Current divider outputI₁ = Iin × R₂/(R₁+R₂)current_divider(0.1,1000,2000)0.067 A
Capacitor Functions (5)
Function Description Formula Example Result
capacitors_series(...)Series capacitance1/C = 1/C₁ + 1/C₂ + ...capacitors_series(100e-6,100e-6)5e-5 F
capacitors_parallel(...)Parallel capacitanceC = C₁ + C₂ + ...capacitors_parallel(100e-6,200e-6)3e-4 F
capacitor_energy(C,V)Energy stored in capacitorE = ½CV²capacitor_energy(100e-6,12)0.0072 J
capacitor_charge(C,V)Charge on capacitorQ = CVcapacitor_charge(100e-6,12)0.0012 C
rc_time_constant(R,C)RC time constantτ = RCrc_time_constant(1000,100e-6)0.1 s
capacitor_impedance(f,C)Capacitive reactanceXc = 1/(2πfC)capacitor_impedance(60,100e-6)26.5 Ω
Inductor Functions (4)
Function Description Formula Example Result
inductors_series(...)Series inductanceL = L₁ + L₂ + ...inductors_series(1e-3,2e-3)0.003 H
inductors_parallel(...)Parallel inductance1/L = 1/L₁ + 1/L₂ + ...inductors_parallel(1e-3,1e-3)5e-4 H
inductor_energy(L,I)Energy stored in inductorE = ½LI²inductor_energy(0.01,2)0.02 J
rl_time_constant(L,R)RL time constantτ = L/Rrl_time_constant(0.01,100)1e-4 s
inductor_impedance(f,L)Inductive reactanceXL = 2πfLinductor_impedance(60,0.01)3.77 Ω
AC Circuit Analysis (8)
Function Description Formula Example Result
impedance_magnitude(R,X)Impedance magnitude|Z| = √(R² + X²)impedance_magnitude(100,100)141.4 Ω
impedance_phase(R,X)Impedance phase angleφ = arctan(X/R)impedance_phase(100,100)0.785 rad
ac_power_apparent(V,I)Apparent powerS = VIac_power_apparent(120,10)1200 VA
ac_power_real(V,I,φ)Real powerP = VI cos φac_power_real(120,10,0)1200 W
ac_power_reactive(V,I,φ)Reactive powerQ = VI sin φac_power_reactive(120,10,pi/4)849 VAR
power_factor(φ)Power factorPF = cos φpower_factor(pi/3)0.5
quality_factor(ωL,R)Q factor of circuitQ = ωL/Rquality_factor(1000,10)100
Resonance and Filters (3)
Function Description Formula Example Result
resonant_freq_lc(L,C)LC resonant frequencyf = 1/(2π√(LC))resonant_freq_lc(1e-3,1e-6)159.2 Hz
bandwidth(f0,Q)Bandwidth of resonant circuitBW = f₀/Qbandwidth(1000,50)20 Hz
cutoff_frequency_rc(R,C)RC filter cutoff frequencyfc = 1/(2πRC)cutoff_frequency_rc(1000,1e-6)159.2 Hz
cutoff_frequency_rl(L,R)RL filter cutoff frequencyfc = R/(2πL)cutoff_frequency_rl(0.01,1000)15915 Hz
Decibel Conversions (5)
Function Description Formula Example Result
db_voltage(V1,V2)Voltage ratio in dBdB = 20 log₁₀(V₁/V₂)db_voltage(10,1)20 dB
db_power(P1,P2)Power ratio in dBdB = 10 log₁₀(P₁/P₂)db_power(100,1)20 dB
db_to_ratio(dB)dB to voltage ratioratio = 10^(dB/20)db_to_ratio(6)1.995
dbm_to_watts(dBm)dBm to wattsW = 10^((dBm-30)/10)dbm_to_watts(30)1 W
watts_to_dbm(W)Watts to dBmdBm = 10 log₁₀(W) + 30watts_to_dbm(0.001)0 dBm
Digital Electronics (3)
Function Description Formula Example Result
binary_to_decimal(binary)Binary to decimal conversionΣ bᵢ × 2ⁱbinary_to_decimal(1010)10
decimal_to_binary(decimal)Decimal to binary conversionConvert to base 2decimal_to_binary(10)1010
bit_count(number)Count set bitsPopulation countbit_count(15)4
Transmission Lines (4)
Function Description Formula Example Result
characteristic_impedance(L,C)Characteristic impedanceZ₀ = √(L/C)characteristic_impedance(1e-6,1e-12)1000 Ω
propagation_delay(L,C)Propagation delaytpd = √(LC)propagation_delay(1e-6,1e-12)1e-9 s
reflection_coefficient(ZL,Z0)Reflection coefficientΓ = (ZL-Z₀)/(ZL+Z₀)reflection_coefficient(75,50)0.2
vswr(gamma)Voltage standing wave ratioVSWR = (1+|Γ|)/(1-|Γ|)vswr(0.2)1.5
🔧 Logic & Boolean Functions 45+ Functions
Basic Boolean Operations (8)
Function Description Formula Example Result
bool_and(...)Boolean AND operationa ∧ b ∧ c ∧ ...bool_and(1,1,0)0
bool_or(...)Boolean OR operationa ∨ b ∨ c ∨ ...bool_or(0,0,1)1
bool_not(x)Boolean NOT operation¬xbool_not(1)0
bool_xor(...)Boolean XOR operationa ⊕ b ⊕ c ⊕ ...bool_xor(1,0,1)0
bool_nand(...)Boolean NAND operation¬(a ∧ b)bool_nand(1,1)0
bool_nor(...)Boolean NOR operation¬(a ∨ b)bool_nor(0,0)1
bool_implies(a,b)Boolean implicationa → bbool_implies(1,0)0
bool_equiv(a,b)Boolean equivalencea ↔ bbool_equiv(1,1)1
Bitwise Operations (15)
Function Description Formula Example Result
bit_and(a,b)Bitwise ANDa & bbit_and(12,10)8
bit_or(a,b)Bitwise ORa | bbit_or(12,10)14
bit_xor(a,b)Bitwise XORa ^ bbit_xor(12,10)6
bit_not(a)Bitwise NOT~abit_not(12)-13
bit_shift_left(a,n)Left bit shifta << nbit_shift_left(5,2)20
bit_shift_right(a,n)Right bit shifta >> nbit_shift_right(20,2)5
bit_rotate_left(a,n)Left bit rotationRotate left n bitsbit_rotate_left(5,1)10
bit_rotate_right(a,n)Right bit rotationRotate right n bitsbit_rotate_right(10,1)5
bit_set(a,pos)Set bit at positiona | (1 << pos)bit_set(8,0)9
bit_clear(a,pos)Clear bit at positiona & ~(1 << pos)bit_clear(9,0)8
bit_flip(a,pos)Flip bit at positiona ^ (1 << pos)bit_flip(8,0)9
bit_test(a,pos)Test bit at position(a >> pos) & 1bit_test(9,0)1
bit_mask(n)Create n-bit mask(1 << n) - 1bit_mask(4)15
bit_population(a)Count set bitsPopulation countbit_population(15)4
bit_trailing_zeros(a)Count trailing zerosTrailing zero countbit_trailing_zeros(8)3
Set Operations (8)
Function Description Formula Example Result
set_union(A,B)Set union (bitset)A ∪ Bset_union(12,10)14
set_intersection(A,B)Set intersection (bitset)A ∩ Bset_intersection(12,10)8
set_difference(A,B)Set difference (bitset)A \ Bset_difference(12,10)4
set_symmetric_difference(A,B)Symmetric difference (bitset)A △ Bset_symmetric_difference(12,10)6
set_complement(A)Set complement (bitset)Āset_complement(12)-13
set_subset(A,B)Check if A ⊆ B (bitset)A ⊆ Bset_subset(8,12)1
set_superset(A,B)Check if A ⊇ B (bitset)A ⊇ Bset_superset(12,8)1
set_cardinality(A)Set cardinality (bitset)|A|set_cardinality(15)4
Fuzzy Logic (8)
Function Description Formula Example Result
fuzzy_and(...)Fuzzy AND (minimum)min(a,b,c,...)fuzzy_and(0.7,0.3,0.9)0.3
fuzzy_or(...)Fuzzy OR (maximum)max(a,b,c,...)fuzzy_or(0.7,0.3,0.9)0.9
fuzzy_not(x)Fuzzy NOT1 - xfuzzy_not(0.7)0.3
fuzzy_triangular_norm(a,b)Product t-norma × bfuzzy_triangular_norm(0.7,0.8)0.56
membership_triangle(x,a,b,c)Triangular membershipTriangle functionmembership_triangle(5,0,5,10)1
membership_trapezoid(x,a,b,c,d)Trapezoidal membershipTrapezoid functionmembership_trapezoid(5,0,3,7,10)1
membership_gaussian(x,μ,σ)Gaussian membershipe^(-½((x-μ)/σ)²)membership_gaussian(5,5,1)1
Sequential Logic (6)
Function Description Formula Example Result
sr_latch(S,R,Q_prev)SR latchSet-Reset latchsr_latch(1,0,0)1
d_flip_flop(D,CLK,Q_prev)D flip-flopData flip-flopd_flip_flop(1,1,0)1
jk_flip_flop(J,K,CLK,Q_prev)JK flip-flopJK flip-flopjk_flip_flop(1,1,1,0)1
counter_up(count,CLK,modulus)Up counter(count + 1) mod ncounter_up(7,1,8)0
counter_down(count,CLK,modulus)Down counter(count - 1) mod ncounter_down(0,1,8)7
📐 Symbolic Math Functions 30+ Functions
Polynomial Operations (3)
Function Description Formula Example Result
poly_eval(x,a0,a1,a2,...)Evaluate polynomiala₀ + a₁x + a₂x² + ...poly_eval(2,1,2,3)17
poly_derivative(n,coeff)Polynomial derivative coefficientn × aₙpoly_derivative(3,5)15
horner_method(x,a0,a1,a2,...)Horner's method evaluationEfficient polynomial evalhorner_method(2,1,2,3)17
Numerical Differentiation (6)
Function Description Formula Example Result
derivative_forward(f_x,f_x_h,h)Forward difference(f(x+h) - f(x))/hderivative_forward(1,1.1,0.1)1
derivative_backward(f_x,f_x_h,h)Backward difference(f(x) - f(x-h))/hderivative_backward(1.1,1,0.1)1
derivative_central(f_x_h,f_x_neg_h,h)Central difference(f(x+h) - f(x-h))/(2h)derivative_central(1.1,0.9,0.1)1
Numerical Integration (5)
Function Description Formula Example Result
trapezoid_rule(f_a,f_b,h)Trapezoidal ruleh(f(a) + f(b))/2trapezoid_rule(1,4,1)2.5
simpson_rule(f_a,f_m,f_b,h)Simpson's ruleh(f(a) + 4f(m) + f(b))/6simpson_rule(1,2,4,0.5)1.25
simpson_38_rule(f0,f1,f2,f3,h)Simpson's 3/8 rule3h(f₀ + 3f₁ + 3f₂ + f₃)/8simpson_38_rule(1,1.5,2.5,4,0.33)1.78
Matrix Operations (5)
Function Description Formula Example Result
matrix_det_2x2(a,b,c,d)2×2 matrix determinantad - bcmatrix_det_2x2(1,2,3,4)-2
matrix_trace_2x2(a,d)2×2 matrix tracea + dmatrix_trace_2x2(1,4)5
matrix_mult_2x2(...)2×2 matrix multiplication elementMatrix multiplicationmatrix_mult_2x2(1,2,3,4,5,6,7,8)19
Vector Operations (6)
Function Description Formula Example Result
vector_magnitude(...)Vector magnitude√(x² + y² + z² + ...)vector_magnitude(3,4)5
vector_dot_product(...)Dot productv₁·v₂vector_dot_product(1,2,3,4)11
vector_cross_product_2d(x1,y1,x2,y2)2D cross productx₁y₂ - y₁x₂vector_cross_product_2d(1,2,3,4)-2
vector_angle(x1,y1,x2,y2)Angle between vectorsarccos(v₁·v₂/(|v₁||v₂|))vector_angle(1,0,0,1)π/2
vector_projection(...)Vector projectionScalar projectionvector_projection(1,2,3,4)0.44
Complex Number Operations (8)
Function Description Formula Example Result
complex_magnitude(a,b)Complex magnitude|a + bi| = √(a² + b²)complex_magnitude(3,4)5
complex_argument(a,b)Complex argumentarg(a + bi) = atan2(b,a)complex_argument(1,1)π/4
complex_add(a,b,c,d)Complex addition (real part)(a+bi) + (c+di) = (a+c)complex_add(1,2,3,4)4
complex_multiply_real(a,b,c,d)Complex multiplication (real)Re[(a+bi)(c+di)] = ac-bdcomplex_multiply_real(1,2,3,4)-5
complex_multiply_imag(a,b,c,d)Complex multiplication (imag)Im[(a+bi)(c+di)] = ad+bccomplex_multiply_imag(1,2,3,4)10
complex_divide_real(a,b,c,d)Complex division (real)Real part of divisioncomplex_divide_real(1,2,3,4)0.44
complex_exp_real(a,b)Complex exponential (real)Re[e^(a+bi)] = e^a cos(b)complex_exp_real(1,0)2.718
complex_exp_imag(a,b)Complex exponential (imag)Im[e^(a+bi)] = e^a sin(b)complex_exp_imag(0,pi/2)1
🔄 Unit Conversion Functions 30+ Functions
Length Conversions (8)
Function Description Formula Example Result
meters_to_feet(m)Meters to feetm / 0.3048meters_to_feet(10)32.81 ft
feet_to_meters(ft)Feet to metersft × 0.3048feet_to_meters(10)3.048 m
inches_to_cm(in)Inches to centimetersin × 2.54inches_to_cm(12)30.48 cm
cm_to_inches(cm)Centimeters to inchescm / 2.54cm_to_inches(25.4)10 in
miles_to_km(mi)Miles to kilometersmi × 1.609344miles_to_km(10)16.09 km
km_to_miles(km)Kilometers to mileskm / 1.609344km_to_miles(16.09)10 mi
nautical_miles_to_km(nmi)Nautical miles to kmnmi × 1.852nautical_miles_to_km(10)18.52 km
Mass Conversions (4)
Function Description Formula Example Result
kg_to_pounds(kg)Kilograms to poundskg × 2.20462kg_to_pounds(10)22.05 lb
pounds_to_kg(lb)Pounds to kilogramslb / 2.20462pounds_to_kg(22)9.98 kg
grams_to_ounces(g)Grams to ouncesg × 0.035274grams_to_ounces(100)3.53 oz
ounces_to_grams(oz)Ounces to gramsoz / 0.035274ounces_to_grams(3.53)100 g
Temperature Conversions (6)
Function Description Formula Example Result
celsius_to_fahrenheit(C)Celsius to FahrenheitC × 9/5 + 32celsius_to_fahrenheit(20)68°F
fahrenheit_to_celsius(F)Fahrenheit to Celsius(F - 32) × 5/9fahrenheit_to_celsius(68)20°C
celsius_to_kelvin(C)Celsius to KelvinC + 273.15celsius_to_kelvin(20)293.15 K
kelvin_to_celsius(K)Kelvin to CelsiusK - 273.15kelvin_to_celsius(293.15)20°C
degrees_to_radians(deg)Degrees to radiansdeg × π/180degrees_to_radians(180)π rad
radians_to_degrees(rad)Radians to degreesrad × 180/πradians_to_degrees(pi)180°
Energy Conversions (6)
Function Description Formula Example Result
joules_to_calories(J)Joules to caloriesJ / 4.184joules_to_calories(1000)239.0 cal
calories_to_joules(cal)Calories to joulescal × 4.184calories_to_joules(100)418.4 J
joules_to_btu(J)Joules to BTUJ / 1055.06joules_to_btu(10000)9.48 BTU
btu_to_joules(BTU)BTU to joulesBTU × 1055.06btu_to_joules(1)1055.06 J
ev_to_joules(eV)Electron volts to jouleseV × 1.602177e-19ev_to_joules(1)1.602e-19 J
joules_to_ev(J)Joules to electron voltsJ / 1.602177e-19joules_to_ev(1.602e-19)1 eV
Pressure Conversions (6)
Function Description Formula Example Result
pascal_to_psi(Pa)Pascals to PSIPa / 6894.76pascal_to_psi(101325)14.7 psi
psi_to_pascal(psi)PSI to Pascalspsi × 6894.76psi_to_pascal(14.7)101325 Pa
pascal_to_atm(Pa)Pascals to atmospheresPa / 101325pascal_to_atm(101325)1 atm
atm_to_pascal(atm)Atmospheres to Pascalsatm × 101325atm_to_pascal(1)101325 Pa
pascal_to_mmhg(Pa)Pascals to mmHgPa / 133.322pascal_to_mmhg(101325)760 mmHg
mmhg_to_pascal(mmHg)mmHg to PascalsmmHg × 133.322mmhg_to_pascal(760)101325 Pa
🔢 Mathematical & Physical Constants 47 Constants
Mathematical Constants (15)
Constant Value Description Usage Example
pi3.141592653589793Pi (π)2 * pi * r
e2.718281828459045Euler's numberexp(1) = e
tau6.283185307179586Tau (2π)tau * r
phi1.618033988749895Golden ratio(1 + sqrt(5))/2
sqrt21.4142135623730951√2sqrt2 * side
sqrt31.7320508075688772√3sqrt3 / 2
sqrt52.23606797749979√5sqrt5 + 1
ln20.6931471805599453ln(2)ln2 * bits
ln102.302585092994046ln(10)ln10 * decades
log2e1.4426950408889634log₂(e)log2e * ln_value
log10e0.4342944819032518log₁₀(e)log10e * ln_value
euler0.5772156649015329Euler-Mascheroni constantGamma function
catalan0.9159655941772190Catalan's constantSeries analysis
apery1.2020569031595943Apéry's constant ζ(3)Zeta function
khinchin2.6854520010653064Khinchin's constantContinued fractions
Physical Constants (22)
Constant Value Units Description
c299792458m/sSpeed of light in vacuum
h6.62607015e-34J⋅Hz⁻¹Planck constant
hbar1.054571817e-34J⋅sReduced Planck constant ℏ = h/2π
g9.80665m/s²Standard gravity
G6.67430e-11m³⋅kg⁻¹⋅s⁻²Gravitational constant
k1.380649e-23J/KBoltzmann constant
Na6.02214076e23mol⁻¹Avogadro constant
R8.314462618J⋅mol⁻¹⋅K⁻¹Gas constant
sigma5.670374419e-8W⋅m⁻²⋅K⁻⁴Stefan-Boltzmann constant
me9.1093837015e-31kgElectron mass
mp1.67262192369e-27kgProton mass
mn1.67492749804e-27kgNeutron mass
u1.66053906660e-27kgAtomic mass unit
e_charge1.602176634e-19CElementary charge
epsilon08.8541878128e-12F/mVacuum permittivity
mu01.25663706212e-6H/mVacuum permeability
ke8.9875517923e9N⋅m²/C²Coulomb constant
alpha7.2973525693e-3dimensionlessFine structure constant
rydberg1.0973731568160e7m⁻¹Rydberg constant
bohr5.29177210903e-11mBohr radius
wien2.897771955e-3m⋅KWien displacement constant
Electronics Constants (7)
Constant Value Units Description
kT_300K4.14e-21JThermal energy at 300K
kT_300K_eV0.0259eVThermal energy at 300K in eV
impedance_vacuum376.730313668ΩImpedance of free space
conductance_quantum7.748091729e-5SConductance quantum
resistance_quantum12906.40372ΩResistance quantum
magnetic_flux_quantum2.067833848e-15WbMagnetic flux quantum
josephson_constant483597.8484e9Hz/VJosephson constant
Special Values (3)
Constant Value Description Usage
infPositive infinityLimit calculations
infinityPositive infinity (alias)Mathematical analysis
nanNaNNot a NumberError handling
📏 Physical Units System 80+ Units
Length Units (12)
Unit Name Conversion Factor Relative to Meter Usage
mmeter1.0Base unitStandard length
cmcentimeter0.0110⁻² mSmall measurements
mmmillimeter0.00110⁻³ mPrecision engineering
kmkilometer100010³ mLong distances
ininch0.02542.54 cmImperial system
ftfoot0.304812 inchesArchitecture, aviation
ydyard0.91443 feetFabric, sports fields
mimile1609.3445280 feetRoad distances
nmnanometer1e-910⁻⁹ mLight wavelengths
μmmicrometer1e-610⁻⁶ mMicroscopy
angstromangstrom1e-1010⁻¹⁰ mAtomic dimensions
Mass Units (7)
Unit Name Conversion Factor Relative to Kilogram Usage
kgkilogram1.0Base unitStandard mass
ggram0.00110⁻³ kgLaboratory measurements
mgmilligram1e-610⁻⁶ kgPharmaceuticals
lbpound0.453592≈ 454 gImperial system
ozounce0.02834951/16 poundFood portions
tonmetric ton100010³ kgLarge masses
uatomic mass unit1.66054e-27≈ proton massAtomic physics
Time Units (8)
Unit Name Conversion Factor Relative to Second Usage
ssecond1.0Base unitStandard time
msmillisecond0.00110⁻³ sComputing, reaction times
μsmicrosecond1e-610⁻⁶ sElectronics
nsnanosecond1e-910⁻⁹ sHigh-speed electronics
minminute6060 sDaily activities
hrhour360060 minWork schedules
dayday8640024 hrCalendar time
yearyear31557600365.25 daysLong-term planning
Energy Units (8)
Unit Name Conversion Factor Relative to Joule Usage
Jjoule1.0Base unitStandard energy
eVelectron volt1.602177e-19≈ 1.6×10⁻¹⁹ JAtomic physics
keVkiloelectron volt1.602177e-1610³ eVX-ray energies
MeVmegaelectron volt1.602177e-1310⁶ eVNuclear physics
calcalorie4.184≈ 4.18 JChemistry
kcalkilocalorie418410³ calFood energy
BTUbritish thermal unit1055.06≈ 1055 JHVAC systems
SI Derived Units (13)
Unit Name Quantity SI Base Units Usage
HzhertzFrequencys⁻¹Oscillations, radio
NnewtonForcekg⋅m⋅s⁻²Mechanical force
PapascalPressurekg⋅m⁻¹⋅s⁻²Pressure, stress
WwattPowerkg⋅m²⋅s⁻³Electrical power
VvoltElectric potentialkg⋅m²⋅s⁻³⋅A⁻¹Electrical voltage
ΩohmElectrical resistancekg⋅m²⋅s⁻³⋅A⁻²Electrical resistance
FfaradCapacitancekg⁻¹⋅m⁻²⋅s⁴⋅A²Electrical capacitance
HhenryInductancekg⋅m²⋅s⁻²⋅A⁻²Electrical inductance
CcoulombElectric chargeA⋅sElectrical charge
TteslaMagnetic fieldkg⋅s⁻²⋅A⁻¹Magnetic field strength
WbweberMagnetic fluxkg⋅m²⋅s⁻²⋅A⁻¹Magnetic flux
Additional Units (25+)
Category Units Description Examples
TemperatureK, celsius, fahrenheitTemperature scalesThermal calculations
CurrentA, mA, μAElectric currentElectronics design
Pressureatm, bar, mmHg, psiPressure unitsEngineering applications
Anglesrad, deg, arcmin, arcsecAngular measurementsNavigation, astronomy
VolumeL, mL, gal, qtVolume measurementsFluid mechanics
Areahectare, acreLarge area measurementsLand surveying

No results found

Try adjusting your search terms or filters